Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(38): 15749-15760, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37740300

RESUMO

Metal/carbon nanotubes (CNTs) have been attractive hybrid systems due to their high specific surface area and exceptional catalytic activity, but their challenging synthesis and dispersion impede their extensive applications. Herein, we report a facile and green approach towards the fabrication of metal/CNT composites, which utilizes a versatile glycopeptide (GP) both as a stabilizer for CNTs in water and as a reducing agent for noble metal ions. The abundant hydrogen bonds in GP endow the formed GP-CNTs with excellent plasticity, enabling the availability of polymorphic CNT species from dispersion to viscous paste, gel, and even to dough by increasing their concentration. The GP molecules can reduce metal precursors at room temperature without additional reducing agents, enabling the in situ immobilization of metal nanoparticles (e.g. Au, Ag, Pt, and Pd) on the CNT surface. The combination of the excellent catalytic properties of Pd particles with photothermal conversion capability of CNTs makes the Pd/CNT composite a promising catalyst for the fast degradation of organic pollutants, as demonstrated by a model catalytic reaction using 4-nitrophenol (4-NP). The conversion of 4-NP using the Pd/CNT composite as the catalyst has increased by 1.6-fold under near infrared light illumination, benefiting from the strong light-to-heat conversion effect of CNTs. Our proposed strategy opens a new avenue for the synthesis of CNT composites as a sustainable and versatile catalyst platform.

5.
Nano Lett ; 23(13): 5975-5980, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37341711

RESUMO

Phonon scattering at grain boundaries (GBs) is significant in controlling the nanoscale device thermal conductivity. However, GBs could also act as waveguides for selected modes. To measure localized GB phonon modes, milli-electron volt (meV) energy resolution is needed with subnanometer spatial resolution. Using monochromated electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) we have mapped the 60 meV optic mode across GBs in silicon at atomic resolution and compared it to calculated phonon densities of states (DOS). The intensity is strongly reduced at GBs characterized by the presence of 5- and 7-fold rings where bond angles differ from the bulk. The excellent agreement between theory and experiment strongly supports the existence of localized phonon modes and thus of GBs acting as waveguides.

6.
Nano Lett ; 23(3): 1068-1076, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36637381

RESUMO

The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.

7.
ACS Nano ; 16(4): 5476-5486, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377615

RESUMO

Indium nitride (InN) has been of significant interest for creating and studying two-dimensional electron gases (2DEG). Herein we demonstrate the formation of 2DEGs in ultrathin doped and undoped 2D InN nanosheets featuring high carrier mobilities at room temperature. The synthesis is carried out via a two-step liquid metal-based printing method followed by a microwave plasma-enhanced nitridation reaction. Ultrathin InN nanosheets with a thickness of ∼2 ± 0.2 nm were isolated over large areas with lateral dimensions exceeding centimeter scale. Room temperature Hall effect measurements reveal carrier mobilities of ∼216 and ∼148 cm2 V-1 s-1 for undoped and doped InN, respectively. Further analysis suggests the presence of defined quantized states in these ultrathin nitride nanosheets that can be attributed to a 2D electron gas forming due to strong out-of-plane confinement. Overall, the combination of electronic and plasmonic features in undoped and doped ultrathin 2D InN holds promise for creating advanced optoelectronic devices and functional 2D heterostructures.

8.
ACS Nano ; 15(10): 16067-16075, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34623147

RESUMO

High dielectric constant (high-k) ultrathin films are required as insulating gate materials. The well-known high-k dielectrics, including HfO2, ZrO2, and SrTiO3, feature three-dimensional lattice structures and are thus not easily obtained in the form of distinct ultrathin sheets. Therefore, their deposition as ultrathin layers still imposes challenges for electronic industries. Consequently, new high-k nanomaterials with k in the range of 40 to 100 and a band gap exceeding 4 eV are highly sought after. Antimony oxide nanosheets appear as a potential candidate that could fulfill these characteristics. Here, we report on the stoichiometric cubic polymorph of 2D antimony oxide (Sb2O3) as an ideal high-k dielectric sheet that can be synthesized via a low-temperature, substrate-independent, and silicon-industry-compatible liquid metal synthesis technique. A bismuth-antimony alloy was produced during the growth process. Preferential oxidation caused the surface of the melt to be dominated by α-Sb2O3. This ultrathin α-Sb2O3 was then deposited onto desired surfaces via a liquid metal print transfer. A tunable sheet thickness between ∼1.5 and ∼3 nm was achieved, while the lateral dimensions were within the millimeter range. The obtained α-Sb2O3 exhibited high crystallinity and a wide band gap of ∼4.4 eV. The relative permittivity assessment revealed a maximum k of 84, while a breakdown electric field of ∼10 MV/cm was observed. The isolated 2D α-Sb2O3 nanosheets were utilized in top-gated field-effect transistors that featured low leakage currents, highlighting that the obtained material is a promising gate oxide for conventional and van der Waals heterostructure-based electronics.

9.
Nanotechnology ; 32(8): 085606, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33147580

RESUMO

The spontaneous growth of GaN nanowires (NWs) in absence of catalyst is controlled by the Ga flux impinging both directly on the top and on the side walls and diffusing to the top. The presence of diffusion barriers on the top surface and at the frontier between the top and the sidewalls, however, causes an inhomogeneous distribution of Ga adatoms at the NW top surface resulting in a GaN accumulation in its periphery. The increased nucleation rate in the periphery promotes the spontaneous formation of superlattices in InGaN and AlGaN NWs. In the case of AlN NWs, the presence of Mg can enhance the otherwise short Al diffusion length along the sidewalls inducing the formation of AlN nanotubes.

10.
Adv Mater ; 33(3): e2005732, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33275309

RESUMO

Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device. Here, it is shown that the novel, ultrathin Ga2 O3 glass is an ideal centimeter-scale coating material that enhances optical performance of the monolayers and protects them against further material deposition. In particular, Ga2 O3 capping of monolayer WS2 outperforms commercial-grade hBN in both scalability and optical performance at room temperature. These properties make Ga2 O3 highly suitable for large-scale passivation and protection of monolayer TMDCs in functional heterostructures.

11.
ACS Nano ; 13(9): 10768-10775, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31491079

RESUMO

Controlled substitutional doping of two-dimensional transition-metal dichalcogenides (TMDs) is of fundamental importance for their applications in electronics and optoelectronics. However, achieving p-type conductivity in MoS2 and WS2 is challenging because of their natural tendency to form n-type vacancy defects. Here, we report versatile growth of p-type monolayer WS2 by liquid-phase mixing of a host tungsten source and niobium dopant. We show that crystallites of WS2 with different concentrations of substitutionally doped Nb up to 1014 cm-2 can be grown by reacting solution-deposited precursor film with sulfur vapor at 850 °C, reflecting the good miscibility of the precursors in the liquid phase. Atomic-resolution characterization with aberration-corrected scanning transmission electron microscopy reveals that the Nb concentration along the outer edge region of the flakes increases consistently with the molar concentration of Nb in the precursor solution. We further demonstrate that ambipolar field-effect transistors can be fabricated based on Nb-doped monolayer WS2.

12.
Ultramicroscopy ; 198: 58-72, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30660032

RESUMO

To provide a direct comparison, off-axis holography and differential phase contrast have been performed using the same microscope on the same specimens for the measurement of active dopants and piezoelectric fields. The sensitivity and spatial resolution of the two techniques have been assessed through the study of a simple silicon p-n junction observed at different bias voltages applied in-situ. For an evaluation of limitations and artefacts of the methods in more complicated systems a silicon pMOS device and an InGaN/GaN superlattice with 2.2-nm In0.15Ga0.85N quantum wells is investigated. We demonstrate the effects of dynamical scattering on the electric field measurements in the presence of local strain-induced sample tilts and its dependence on parameters like the convergence angle.

13.
Adv Mater ; 30(39): e1803748, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30133006

RESUMO

Optical and electrical properties of 2D transition metal dichalcogenides (TMDCs) grown by chemical vapor deposition (CVD) are strongly determined by their microstructure. Consequently, the visualization of spatial structural variations is of paramount importance for future applications. This study demonstrates how grain boundaries, crystal orientation, and strain fields can unambiguously be identified with combined lateral force microscopy and transverse shear microscopy (TSM) for CVD-grown tungsten disulfide (WS2 ) monolayers, on length scales that are relevant for optoelectronic applications. Further, angle-dependent TSM measurements enable the fourth-order elastic constants of monolayer WS2 to be acquired experimentally. The results facilitate high-throughput and nondestructive microstructure visualization of monolayer TMDCs and insights into their elastic properties, thus providing an accessible tool to support the development of advanced optoelectronic devices based on such 2D semiconductors.

14.
Nanotechnology ; 27(45): 455603, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727147

RESUMO

It is demonstrated that growing InGaN nanowires in metal-rich conditions on top of GaN nanowires results in a widening of the InGaN section. It is shown that the widening is eased by stacking faults (SFs) formation, revealing facets favorable to In incorporation. It is furthermore put in evidence that partial dislocations terminating SFs efficiently contribute to elastic strain relaxation. Indium accumulation on top of the InGaN section is found to result in an axial growth rate decrease, which has been assigned to increased N-N recombination and subsequent effective nitrogen flux decrease, eventually leading to the formation of InGaN nano-umbrellas/nanoplatelets.

15.
Nanotechnology ; 27(19): 195704, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27041669

RESUMO

The structural and optical properties of axial GaN/InGaN/GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nano-cathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 °C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing.

16.
Langmuir ; 28(24): 8915-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22444199

RESUMO

Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.


Assuntos
Fluorescência , Nanopartículas Metálicas/química , Prata/química , Coloides/síntese química , Coloides/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...